2,160 research outputs found

    The bend stiffness of S-DNA

    Get PDF
    We formulate and solve a two-state model for the elasticity of nicked, double-stranded DNA that borrows features from both the Worm Like Chain and the Bragg--Zimm model. Our model is computationally simple, and gives an excellent fit to recent experimental data through the entire overstretching transition. The fit gives the first value for the bending stiffness of the overstretched state as about 10 nm*kbt, a value quite different from either B-form or single-stranded DNA.Comment: 7 pages, 1 figur

    Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers

    Get PDF
    Motivated by recent experiments showing nonlinear elasticity of in vitro networks of the biopolymer actin cross-linked with filamin, we present an effective medium theory of flexibly cross-linked stiff polymer networks. We model such networks by randomly oriented elastic rods connected by flexible connectors to a surrounding elastic continuum, which self-consistently represents the behavior of the rest of the network. This model yields a crossover from a linear elastic regime to a highly nonlinear elastic regime that stiffens in a way quantitatively consistent with experiment.Comment: 4 pages, 3 figure

    Critical behaviour in the nonlinear elastic response of hydrogels

    Full text link
    In this paper we study the elastic response of synthetic hydrogels to an applied shear stress. The hydrogels studied here have previously been shown to mimic the behaviour of biopolymer networks when they are sufficiently far above the gel point. We show that near the gel point they exhibit an elastic response that is consistent with the predicted critical behaviour of networks near or below the isostatic point of marginal stability. This point separates rigid and floppy states, distinguished by the presence or absence of finite linear elastic moduli. Recent theoretical work has also focused on the response of such networks to finite or large deformations, both near and below the isostatic point. Despite this interest, experimental evidence for the existence of criticality in such networks has been lacking. Using computer simulations, we identify critical signatures in the mechanical response of sub-isostatic networks as a function of applied shear stress. We also present experimental evidence consistent with these predictions. Furthermore, our results show the existence of two distinct critical regimes, one of which arises from the nonlinear stretch response of semi-flexible polymers.

    Gait monitoring: from the clinics to the daily life

    Get PDF
    Monitoring of gait in daily living allows a quantitative analysis of walking in unrestricted conditions, with many potential clinical applications. This thesis aims at addressing the limitations that still hinder the wider adoption of this approach in clinical practice, providing healthcare professionals and researchers new tools which may impact on current gait assessment procedures and improve the treatment of many diseases leading to – or generated by – mobility impairments. The thesis comprises four experimental sections: Accuracy of commercially-available devices. Step detection accuracy in currently available physical activity monitors was assessed in healthy individuals. The best performing device was then tested in multiple sclerosis patients, showing reliability but highly speed-dependent accuracy. These findings suggest that a short set of tests performed in controlled conditions could inform researchers before starting unsupervised monitoring of gait in patients. Differences between laboratory and free-living gait parameters. The study assessed the accuracy of two algorithms for gait event detection, and provided normative values of gait temporal parameters for healthy subjects in different environments and types of walking. A pilot study toward clinical application. This pilot study compared laboratory based tests with daily living assessment of gait features in multiple sclerosis patients. Results provided clear evidence that in this population clinical gait tests might not represent typical gait patterns of daily living. Analysis of free-living walking in patients with Diabetes. A systematic review is presented looking for evidence of the effectiveness of walking as physical activity to reduce inflammation. Then, cadence and step duration variability are examined during free-living walking in a group of patients with diabetes. This thesis systematically highlighted potential and actual limitations in the use of wearable sensors for gait monitoring in daily life, providing clear practical indications and normative values which are essential for the widespread informed and effective clinical adoption of this technology

    A pulsational approach to near infrared and visual magnitudes of RR Lyrae stars

    Get PDF
    In this paper we present an improved theoretical scenario concerning near infrared and visual magnitudes of RR Lyrae variables, as based on up-to-date pulsating models. On this basis, we revisit the case of the prototype variable RR Lyr, showing that the parallax inferred by this new pulsational approach appears in close agreement with HST absolute parallax. Moreover, available K and V measurements for field and cluster RR Lyrae variables with known reddening and metal content are used to derive a relation connecting the K absolute magnitude to period and metallicity, as well as a new calibration of the M_V-[Fe/H] relation. The comparison between theoretical prescriptions and observations suggests that RR Lyrae stars in the field and in Galactic Globular Clusters should have quite similar evolutionary histories. The comparison between theory and observations also discloses a general agreement that supports the reliability of current pulsational scenario. On the contrary, current empirical absolute magnitudes based on the Baade-Wesselink (BW) method suggest relations with a zero-point that is fainter than predicted by pulsation models, together with a milder metallicity dependence. However, preliminary results based on a new calibration of the BW method provided by Cacciari et al. (2000) for RR Cet and SW And appear in a much better agreement with the pulsational predictions.Comment: 11 pages, 9 postscript figures, accepted for publication on MNRA

    Absolute Determination of the 22Na(p,g) Reaction Rate in Novae

    Full text link
    Gamma-ray telescopes in orbit around the Earth are searching for evidence of the elusive radionuclide 22Na produced in novae. Previously published uncertainties in the dominant destructive reaction, 22Na(p,g)23Mg, indicated new measurements in the proton energy range of 150 to 300 keV were needed to constrain predictions. We have measured the resonance strengths, energies, and branches directly and absolutely by using protons from the University of Washington accelerator with a specially designed beamline, which included beam rastering and cold vacuum protection of the 22Na implanted targets. The targets, fabricated at TRIUMF-ISAC, displayed minimal degradation over a ~ 20 C bombardment as a result of protective layers. We avoided the need to know the stopping power, and hence the target composition, by extracting resonance strengths from excitation functions integrated over proton energy. Our measurements revealed that resonance strengths for E_p = 213, 288, 454, and 610 keV are stronger by factors of 2.4 to 3.2 than previously reported. Upper limits have been placed on proposed resonances at 198-, 209-, and 232-keV. We have re-evaluated the 22Na(p,g) reaction rate, and our measurements indicate the resonance at 213 keV makes the most significant contribution to 22Na destruction in novae. Hydrodynamic simulations including our rate indicate that the expected abundance of 22Na ejecta from a classical nova is reduced by factors between 1.5 and 2, depending on the mass of the white-dwarf star hosting the nova explosion.Comment: 20 pages, 18 figures; shortened paper, accepted in Phys. Rev.

    Cepheid variables in the LMC cluster NGC 1866. I. New BVRI CCD photometry

    Full text link
    We report BV(RI)c CCD photometric data for a group of seven Cepheid variables in the young, rich cluster NGC 1866 in the Large Magellanic Cloud. The photometry was obtained as part of a program to determine accurate distances to these Cepheids by means of the infrared surface brightness technique, and to improve the LMC Cepheid database for constructing Cepheid PL and PLC relations. Using the new data together with data from the literature, we have determined improved periods for all variables. For five fundamental mode pulsators, the light curves are now of excellent quality and will lead to accurate distance and radius determinations once complete infrared light curves and radial velocity curves for these variables become available.Comment: To appear in ApJ Supp., AASTeX, 24 pages, 8 tables, 8 figure
    • …
    corecore